This Pitiless Storm

Poor naked wretches, whereso’er you are,
That bide the pelting of this pitiless storm,
How shall your houseless heads and unfed sides,
Your loop’d and window’d raggedness, defend you,
From seasons such as these?
The Tragedy of King Lear Act III, Scene 4

“Whenever people talk to me about the weather,” the Irish writer Oscar Wilde once remarked, “I always feel quite certain that they mean something else.” As it happens, the weather at this year’s British Open has been delayed by high winds and will not be finished with the regulation 72 holes until Monday at the earliest. Which raises a question: why does the Open need to finish all 72 holes? The answer concerns something called a “Simpson’s Paradox”—an answer that also demonstrates just how talk about the weather at the British Open is in fact talk about something else. Namely, the 2016 American presidential election.

To see how, it’s first necessary to see the difference between the British Open and other professional golf tournaments, which are perfectly fine with shortening themselves. Take for instance the 2005 Northern Trust Open in Los Angeles: Adam Scott won in a playoff against Chad Campbell after the tournament was shortened to 36 holes due to weather. In 2013, the Tournament of Champions at Kapalua in Hawaii was “first cut to 54 holes because of unplayable conditions over the first two days,” according to Reuters, and was under threat of “being further trimmed to 36 holes.” The same story also quoted tour officials as saying “the eventual champion would wind up with an ‘unofficial win’” were the tournament to be shortened to 36 holes. (As things shook out they did end up completing 54 holes, and so Dustin Johnson’s win officially counted.) In a standard PGA tournament then, the “magic number” for an “official” tournament is 54 holes. But if so, then why does the Open need 72?

To answer that, let’s take a closer look at the standard professional golf tournament. Most such tournaments are conducted according to what the Rules of Golf calls “stroke play”: four rounds of golf, or 72 holes, at the end of which the players who have made it that far add up their scores—their number of strokes. The player with the lowest score, it may seem like it goes without saying, wins. But it does need to be said—because that isn’t the only option.

Many amateur tournaments after all, such as the United States Amateur, use the rules format known as “match play.” Under this format, the winner of the contest is not necessarily the player who shoots the lowest overall score, as in stroke play. Instead, as John Van der Borght has put the matter on the website of the United States Golf Association, in match play the “winner is the player who wins the most holes.” It’s a seemingly minor difference—but in fact it creates such a difference that match play is virtually a different sport than stroke play.

Consider, for instance, the Accenture Match Play tournament—the only tournament on the PGA Tour to be held under match play rules. The 2014 edition (held at the Dove Mountain course near Tucson, Arizona), had some results that demonstrate just how different match play is than stroke play, as Doug Ferguson of the Associated Press observed. “Pablo Larrazabal shot a 68 and was on his way back to Spain,” Ferguson noted about the first day’s results, while “Ernie Els shot 75 and has a tee time at Dove Mountain on Thursday.” In other words, Larrazabal lost his match and Els won his, even though Larrazabal was arguably the better player at this tournament—at least, if you consider the “better player” to be the one who puts his ball in the hole most efficiently.

Such a result might seem unfair—but why? It could be argued that while shooting a lower number might be what stroke play golf is, that isn’t what match play golf is. In other words, Larrazabal obviously wasn’t better at whatever it was that this tournament measured: if Larrazabal couldn’t beat his opponent, while Els could, then clearly Els deserved to continue to play while Larrazabal did not. While you might feel that, somehow or other, Larrazabal got jobbed, that’s merely a sentimental reaction to what ought to be a hardhearted calculation: maybe it’s true that under stroke play rules Larrazabal would have won, but that wasn’t the rules of the contest at Dove Mountain. In other words, you could say that golfing ability was, in a sense, socially constructed: what matters isn’t some “ahistorical” ability to golf, but instead how it is measured.

Here’s the $64,000 question a guy named Bill James might ask in response to such an argument, however (couched in terms of baseball players): “If you were trying to win a pennant, how badly would you want this guy?” In other words, based on the evidence presented, what would you conclude about the respective golf ability of Els and Larrazabal? Wouldn’t you conclude that Larrazabal is better at the task of putting his ball in the hole, and that the various rule systems that could be constructed around that task are merely different ways of measuring that ability—an ability that pre-existed those systems of measurement?

“We’re not trying to embarrass the best players in the game,” said Sandy Tatum at the 1974 U.S. Open, the so-called Massacre at Winged Foot: “We’re trying to identify them.” Scoring systems in short should be aimed at revealing, not concealing, ability. I choose Bill James to make the point not just because the question he asks is so pithy, but because he invented an equation that is designed to discover underlying ability: an equation called the Pythagorean Expectation. That equation, in turn, demonstrates just why it is so that match play and stroke play are not just different—yet equally valid—measures of playing ability. In so doing, James also demonstrates just why it is that the Open Championship requires that all 72 holes be played.

So named because it resembles so closely that formula, fundamental to mathematics, called the Pythagorean Theorem, what the Pythagorean Expectation says is that the ratio of a team’s (or player’s) points scored to that team’s (or player’s) points allowed is a better predictor of future success than the team’s (or player’s) ratio of wins to losses. (James used “runs” because he was dealing with baseball.) More or less it works: as Graham MacAree puts it on the website FanGraphs, using James’ formula makes it “relatively easy to predict a team’s win-loss record”—even in sports other than baseball. Yet why is this so—how can a single formula predict future success at any sport? It might be thought, after all, that different sports exercise different muscles, or use different strategies: how can one formula describe underlying value in many different venues—and thus, incidentally, demonstrate that ability can be differentiated from the tools we use to measure it?

The answer to these questions is that adding up the total points scored, rather than the total games won, gives us a better notion of the relative value of a player or a team because it avoids something called the “Simpson’s Paradox”—which is what happens when, according to Wikipedia, it “appears that two sets of data separately support a certain hypothesis, but, when considered together, they support the opposite hypothesis.” Consider what happens for example when we match Ernie Els’ 75 to Pablo Larrazabal’s 68: if we match them according to who won each hole, Els comes out the winner—but if we just compared raw scores, then Larrazabal would. Simpson’s Paradoxes appear, in short, when we draw the boundaries around the raw data differently: the same score looks different depending on what lens is used to view it—an answer that might seem to validate those who think that underlying ability doesn’t exist, but only the means used to measure it. But what Simpson’s Paradox shows isn’t that all boundaries around the data are equal—in fact, it shows just the opposite.

What Simpson’s Paradox shows, in other words, is that drawing boundaries around the data can produce illusions of value if that drawing isn’t done carefully—and most specifically, if the boundaries don’t capture all of the data. That’s why the response golf fans might have to the assertion that Pablo Larrazabal is better than Ernie Els proves, rather than invalidates, the argument so far: people highly familiar with golf might respond, “well, you haven’t considered the total picture—Els, for instance, has won two U.S. Opens, widely considered to be the hardest tournament in the world, and Larrazabal hasn’t won any.” But then consider that what you have done just demonstrates the point made by Simpson’s Paradox: in order to say that Els is better, you have opened up the data set; you have redrawn the boundaries of the data in order to include more information. So what you would have conceded, were you to object to the characterization of Larrazabal as a better golfer than Els on the grounds that Els has a better overall record than Larrazabal, is that the way to determine the better golfer is to cast the net as wide as possible. You have demanded that the sample size be increased.

That then is why a tournament contested over only 36 holes isn’t considered an “official” PGA tournament, while 54 holes isn’t enough to crown the winner of a major tournament like the Open Championship (which is what the British Open is called when it’s at home). It’s all right if a run-of-the-mill tournament be cut to 54 holes, or even 36 (though in that case we don’t want the win to be official). But in the case of a major championship, we want there to be no misunderstandings, no “fluky” situations like the one in which Els wins and Larrazabal doesn’t. The way to do that, we understand, is to maximize chances, to make the data set as wide as possible: in sum, to make a large sample size. We all, I think, understand this intuitively: it’s why baseball has a World Series rather than a World Championship Game. So that is why, in a major championship, it doesn’t matter how long it takes—all the players qualified are going to play all 72 holes.

Here I will, as they say in both golf and baseball, turn for home. What all of this about Simpson’s Paradoxes means, at the end of the day, is that a tournament like the Open Championship is important—as opposed to, say, an American presidential election. In a presidential election as everyone knows, what matters isn’t the total numbers of votes a candidate wins, but how many states. In that sense, American presidential elections are conducted according to what, in golf, would be considered match play instead of stroke play. Now, as Bill James might acknowledge, that begs the question: does that process result in better candidates being elected?

As James might ask in response: would you like to bet?


Luck of the Irish

 … I hear him mock
The luck of Caesar, which the gods give men
To excuse their after wrath.
Antony and Cleopatra V, ii

Stephanie Wei, the ex-Yalie golf blogger, recently got her press credentials revoked for the crime of filming tour players during a non-televised Monday practice round at the WGC-Match Play using a live-stream video app. According to her own account, the tour said that her “live-streaming of behind-the-scenes content had violated the Tour’s media regulations.” Wei has admitted that the tour did have a right to take away her credentials (it’s in her contract), but she argued in response that her work produced “fresh, interesting and different content,” and thus enhanced the value of the tour’s product. Wei’s argument however, as seductive as it might be, is a great example of someone manipulating what Thomas Frank has called “the titanic symbolic clash of hip and square” for their own ends: Wei wants to be “hip”—but her actual work is not only just as “square” as any old-school sportswriter who didn’t see fit to mention that Ty Cobb was one of the meanest and most racist men in America, or that Mickey Mantle was a nihilistic drunk, but in fact might be even more harmful.

As Thomas Frank was writing so long ago as the 1990s, the new digital economy has been sold as an “economic revolution,” celebrating “artists rather than commanders, wearers of ponytails and dreamers of cowboy fantasies who proudly proclaim their ignorance of ‘rep ties.’” In contrast to the old world of “conformity, oppression, bureaucracy, meaninglessness, and the disappearance of individualism”—in a word, golf—the new would value “creativity” and “flexibility.” It’s the bright new world we live in today.

So inevitable does that narrative appear that of course Deadspin, the hipsters’ ESPN, jumped on it. “It’s not surprising,” proclaimed Samer Kalaf, “that the PGA Tour, a stuffy organization for a stuffy sport, is being truculent over something as inconsequential as this, but that doesn’t make it any less ridiculous.” The part of Judge Smails (Caddyshack’s prototypical stuffed shirt) is played in this drama by the PGA Tour’s Ty Votaw, who told that in the eyes of the tour, what Wei did was “stealing.” On the theory of the tour, what Wei did extracted value from the tour’s product.

Wei herself, to be sure, had a different theory about her actions. Wei wrote that her purpose in transmitting the “raw, alternative footage”—excellent use of buzzwords!—was to “spread fanfare.” In other words, Wei was actually doing the PGA Tour a favor because of her hip, new kind of journalism. It’s an argument you are probably familiar with, because it is the same one the venues that don’t pay bands, or the companies that tell you to take an internship, or people who tell you to “get on YouTube” make: think of the exposure, man!

Yet while Wei pleads her case on the basis of her hepcat, app-using new jive journo-ing, in fact her stuff isn’t much, if any, different from the bad old days of sports reporting, when writers like Grantland Rice were more interested in palling around with the athletes (and, more worryingly, the owners) than with the audience. The telling detail can be found in her coverage of Rory McIlroy’s win at the very same tournament she got busted at: the Match Play.

The Match Play, obviously, is conducted under match play rules and not stroke play, which meant that, to win, Rory McIlroy had to win seven consecutive matches. In several of those matches, McIlroy came from behind to win, which prompted the following from Wei: “What I found the most interesting [what? Wei is missing a noun here] about McIlroy’s victory,” Wei wrote, “and his route to the winner’s circle was the way he found another gear when he was losing late in the match.” This McIlroy is not the same McIlroy as the one “we knew two years ago”—he is “a more mature one that knows how to dig deep.” Wei thusly repeats one of the most standard sorts of sportswriting cliche.

What of it? Well, the difficulty with this particular cliche, the reason why it is not “on a par” with those jolly old-school fellows who didn’t mention that a lot of ball players took speed, or cheated on their wives, or beat them, or that the owners were chiseling everyone for pennies on the dollar while looking the other way as men’s brains were slowly battered into jello—oh wait, that still happens—is that it justifies a species of rhetoric that gets repeated in many other arenas of life. (The most important of them being, of course, the economic.) That is the rhetoric of “toughness,” the “intangibles,” and so on—you know, the ghosts that don’t exist but are awfully handy when justifying why nobody’s getting a raise.

The belief in a player’s “toughness” or whatever words a given sportswriter can invent—the invention of such terms being largely what sportswriting is about—has been at best questionable, and at worst a knowing cynicism, ever since Gilovich’s, Tversky’s, and Vallone’s landmark 1985 paper, “The Hot Hand in Basketball: On the Misperception of Random Sequences.” The “hot hand,” the three proved, is merely a product of cognitive bias: when people are asked, for instance, to predict sequences of coin tosses, they inevitably expect the tosses to be half heads and half tails—even though such an even breakdown, no matter how many tosses are made, is nearly impossible.

So too in sports: writers continually ask their audience to believe that an athlete has “matured,” or “dug deep,” or what have you, when the more likely explanation is just that the athlete’s inherent talent level eventually expressed itself—or, in the case of a losing effort, the other side “got lucky.” Outcomes in sports are determined by skill (and the lack of it), not by “grit” or “will.” Rory won because he is a better golfer than nearly anyone on the planet, and while that skill can be masked by chance, over time it is more likely to expose the other player’s relative lack of skill.

Rory McIlroy won his tournament because he is a good golfer, not because he has some kind of psychological strength the rest of us lack. The fact that Stephanie Wei participates in this age-old sporting charade demonstrates that, for all her pretensions to the contrary, there isn’t a great deal different between her “new school” approach and that of her “stuffy” opponents. There is, perhaps, even reason to cheer for the PGA Tour in this dispute: at least they, unlike many in the age of the New Economy, believe people ought to get paid.

Mr. Tatum’s Razor

Arise, awake, and learn by approaching the exalted ones, for that path is sharp as a razor’s edge, impassable, and hard to go by, say the wise.
Katha Upanishad 1-III-14

Plurality is never to be posited without necessity.
—William of Ockham. Questions on the Sentences of Peter Lombard. (1318).

“The United States had lost. And won.” So recently wrote the former European and present naturalized American John Cassidy when Team USA advanced out of the “group stage” in the World Cup soccer tournament despite losing its last game of that stage. (To Germany, 1-0.) So even though they got beat, it’s the first time the U.S. has advanced out of the group stage in back-to-back Cups. But while the moment represented a breakthrough by the team, Cassidy warns it hasn’t been accompanied by a breakthrough in the fandom: “don’t ask [Americans] to explain how goal difference works,” he advises. He’s right that most are unfamiliar with the rule that allowed the Americans to play on, but he’s wrong if he’s implying that Americans aren’t capable of understanding it: the “sabermetric revolution”—the statistical study of the National Pastime—begins by recognizing the same principle that also backs goal difference. Yet while thus there’s precedent to think that Americans could understand goal difference—and, maybe, accept soccer as a big-time sport—there’s one reason to think America can’t: the American political system. And, though that might sound wacky enough for any one piece of writing, golf—a sport equally at home in America and Europe—is ideally suited to explain why.

Goal difference is a procedure that applies at the opening stage of the World Cup, which is organized differently than other large sporting tournaments. The NCAA college basketball tournament, for instance, is an “elimination” type tournament: sorts each of its 64 teams into four different brackets, then seeds each bracket from a #1 ranked team to a #16 ranked team. Each team then plays the team on the opposite side of the bracket, so that the the best team plays the lowest ranked team, and so on. Winning allows a team to continue; losing sends that team home, which is what makes it an “elimination” type of tournament.

The World Cup also breaks its entrants into smaller groups, and for the same reason—so that the best teams don’t play each other too early—but that’s where the similarities end. The beginning, “group” stage of the tournament is conducted in a round-robin format: each team in a group plays every other team in a group. Two teams from each group then continue to the next part of the competition.

Because the group stage is played under a round-robin, rather than elimination, structure losing a game doesn’t result necessarily in exiting the tournament—which is not only how the United States was not eliminated from competition by losing to Germany, but also is what makes the World Cup un-American in Cassidy’s estimation. “Isn’t cheering a team of losers,” Cassidy writes, “an un-American activity?” But there’s at least two questionable ideas packed into this sentence: one is that a team that has lost—a “loser”—is devoid of athletic ability, or what we might call value, and secondly that “losers” are un-American, or anyway that cheering for them is.

The round-robin format of the group stage after all just means that the tournament does not think a loss of a game necessarily reveals anything definitive about the value of a team: only a team’s record against all the other teams in its group does that. If the tournament is still unsure about the value of a team—that is, if two or more teams are tied for best, or second-best (two teams advance) record—then the tournament also looks at other ways to determine value. That’s what “goal difference,” or differential, is: as Ken Boehlke put it on CBSports website (“Understanding FIFA World Cup Procedures”), goal difference is “found by simply subtracting a team’s goals against from its goals scored.” What that means is that by the way the World Cup reckons things, it’s not only important whether a team lost a close game, but it’s also important if that team wins a blow-out.

Goal difference was, as Cassidy says, the reason why the American team was able to be one of the two teams of each group to advance. It’s true that the Americans were tied by win-loss record with another team in their group, Portugal. But the Americans only lost to Germany by one goal, while earlier in the stage the Portuguese lost 4-0. That, combined with some other results, meant that the United States advanced and Portugal did not. What the World Cup understands, is that just winning games isn’t necessarily a marker of a team’s quality, or value: what also matters is how many goals a team allows, and scores.

Now, John Cassidy appears to think that this concept is entirely foreign to Americans, and maybe he’s right—except for any of the Americans who happen to have seen the movie Moneyball, which not only grossed over $75 million dollars in the United States and was nominated for six Oscars but also starred Brad Pitt. “What are you really worth?” was the film’s tagline, and in the speech that is the centerpiece of the movie, the character Peter Brand (played by Jonah Hill, another fairly well-known actor) says to his boss—general manager of the Oakland A’s Billy Beane (played by Pitt)—that “Your goal … should be to buy wins. And in order to buy wins, you need to buy runs.” And while Moneyball, the film, was released just a few years ago, the ideas that fuel it have been around since the 1970s.

To be sure, it’s hardly news that scoring points results in winning games—the key insight is that, as Graham MacAree put it on the website FanGraphs, it is “relatively easy to predict a team’s win-loss record using a simple formula,” a formula that was invented a man named Bill James in the 1970s. The formula resembled the classic Pythagorean Theorem that James called it the Pythagorean Expectation: what it expressed was that the ratio of a team’s past runs scored to runs allowed is a better predictor of future success (i.e., future wins and losses) than that team’s past ratio of wins to losses. What it meant was that, to quote MacAree again, “pure pythagorean expectancy is probably a better way of gauging a team than actual wins and losses.” Or to put it another way, knowing how many runs a team scored versus how many that team’s opponents scored is more valuable than knowing how many games it won.

What the Pythagorean Expectation model and the goal difference model do, then, concentrate focus on what is the foundational act of their respective sports: scoring goals and scoring runs. Conversely, both weaken attention on winning and losing. That might appear odd: isn’t the point of playing a game to win, not (just) to score? But what both these methods realize is that a focus on winning and losing, instead of scoring, is vulnerable to a particular statistical illusion called a Simpson’s Paradox.

As it happens, an episode of the television series Numb3rs used a comparison of the batting averages of Derek Jeter and David Justice in the middle 1990s to introduce the idea of what a Simpon’s Paradox is, which seems tailor-made for the purpose. Here is a table—a more accurate one than the television show used—that shows those averages during the 1995, 1996, and 1997 seasons:





Derek Jeter









David Justice









Compare the year-by-year averages: Jeter, you will find, has a worse average than Justice in every year. Then compare the two players’ totals: Jeter actually has a slightly better average than Justice. A Simpson’s Paradox results, as the Stanford Encyclopedia of Philosophy puts it, a when the “structures that underlie” a set of facts “invalidate … arguments that many people, at least initially, take to be intuitively valid.” Or as the definition on Wikipedia describes it, a bit more elegantly, the paradox occurs when “appears that two sets of data separately support a certain hypothesis, but, when considered together, they support the opposite hypothesis.” In this case, if we consider the data year-by-year, it seems like Justice is a better hitter than Jeter—but when we consolidate all of the data, it supports the notion that Jeter is better than Justice.

There’s at least two ways we can think that the latter hypothesis is the more likely: one is the simple fact that 1995 was Derek Jeter’s first appearance in the major leagues, because he was born in 1974, whereas Justice was already a veteran player who was born eight years earlier. Jeter is younger. Quite obviously then from the perspective of a general manager looking at these numbers after the 1997 season, buying Jeter is a better move because more of Jeter’s career is available to be bought: since Jeter is only retiring this year (2014), that means that in 1997 there was 17 seasons of Derek Jeter available, whereas since David Justice retired in 2002, there were only 5 more seasons of David Justice available. Of course, none of that information would have been available in 1997—and injuries are always possible—but given the age difference it would have been safe to say that, assuming you valued each player relatively equally on the field, Jeter was still more valuable. In one sense though that exercise isn’t very helpful, because it doesn’t address just what Simpson’s Paradox has to do with thinking about Derek Jeter.

In another though it has everything to do with it. The only question that matters about a baseball player, says Bill James, is “If you were trying to win a pennant, how badly would you want this guy?” Or in other words, don’t be hypnotized by statistics. It sounds like a simple enough lesson, which in a way it is—but it’s terribly difficult to put into practice. In this case, it is terribly easy to become mystified by the two players’ batting averages, but what James might advise is to look at the events that these numbers represent: instead of looking at the averages, look at the components of those averages.

 What looking at the raw numbers reveals is that Jeter had more hits than Justice over the three seasons: 385 to 312. That difference matters because—unlike the difference in batting average over the same period, which is only a couple of points—78 more hits is a lot more hits, and as James wrote in The New Bill James Historical Baseball Abstract, the “essential measure of a hitter’s success is how many runs he has created.” Further, without getting too far into the math of it, smart people who’ve studied baseball have found that a single hit is worth nearly half a run. (Joe Posnanski, former Senior Writer at Sports Illustrated and one of those people, has a nice post summarizing the point called “Trading Walks For Hits” at What that would mean is that Jeter may have created more runs than Justice did over the same period: depending on the particular method used, perhaps more than twenty more runs. And since runs create wins (that conversion being calculated as about ten runs to the win) that implies that Jeter likely helped his team to two more wins than Justice did over the same period.

To really know which player contributed more to winning would require a lot more investigation than that, but the point is that following James’ method leads towards the primary events that generate outcomes, and away from the illusions that a focus on outcomes foster. Wins are generated by runs, so focus on runs; runs are created by hits, so focus on hits. So too does goal difference mean that while the World Cup recognizes wins, it also recognizes the events—goals—that produce wins. Put that way, it sounds quite commonsensical—but in fact James was lucky in a sense to stumble upon it: because there are two ways to organize sport, and only one of those types is amenable to this kind of analysis. It was fortunate, both to James and to baseball, that he was a fan of a game that could easily be analyzed this way.

In sports like baseball, there’s a fairly predictable relationship between scoring and winning. In other sports though there isn’t, and that’s why golf is very important. It is a sport that under one way to play it the sport is very amenable to means of analysis like the World Cup’s goal difference or Bill James’ Pythagorean Expectation. Golf however also has another way to play, and that way does not have a predictable relationship between scores and wins. What the evidence will show is that having two different forms to the sport isn’t due to a mistake on the part of the designers’: it’s that each form of the game was designed for a different purpose. And what that will show, I will argue, is that whether a game has one sort of scoring system or the other predicts what the purpose of the design is—and vice versa.

On the PGA Tour, the standard tournament consists of four rounds, or 72 holes, at the end of which the players who have made it that far add up their scores—their number of strokes—and the lowest one wins. In the Rules of Golf, this format is known as “stroke play.” That’s what makes it like the group stage of the World Cup or Bill James’ conception of baseball: play begins, the players attempt some action that produces a “score” (however that is determined), and at the end of play each of those scoring events is added together and compared. The player or team that produces the right amount of these “scoring events” is then declared the winner. In short, under the rules of stroke play—just as to the World Cup’s group stage, or to Bill James’ notion of baseball—there is a direct relationship between the elemental act of the game, scoring, and winning.

But the format most often used by golf’s professionals is not the only method available: many amateur tournaments, such as the United States Amateur, use the rules format known as “match play.” Under this format, the winner of the contest is not necessarily the player who shoots the lowest overall score, as in stroke play. Instead, as John Van der Borght has put the matter on the website of the United States Golf Association, the official rule-making body of the sport, in match play the “winner is the player who wins the most holes.” It’s a seemingly minor difference—but in fact it creates such a difference that match play is virtually a different sport than stroke play.

Consider, for instance, this year’s Accenture Match Play tournament, held at the Dove Mountain course near Tucson, Arizona. (The only tournament on the PGA Tour to be held under match play rules.)  “Factoring in conceded putts,” wrote Doug Ferguson of the Associated Press earlier this season, “Pablo Larrazabal shot a 68 and was on his way back to Spain,” while “Ernie Els shot 75 and has a tee time at Dove Mountain on Thursday.” In other words, Larrazabal lost his match and Els won his, even though Larrazabal played better than Els. Intuitively, Larrazabal was the better player at this tournament, which would lead to thinking Larrazabal continued to play and Els exited—but the actual results conclude the reverse. It’s a Simpson’s Paradox, and unlike stroke play—which cannot generate Simpson’s Paradoxes—match play produces them all the time. That’s why match play golf does not resemble baseball or soccer, as golf does in stroke play, but instead a sport whose most prestigious tournament—Wimbledon—just concluded. And tennis is the High Church of Simpson’s Paradox.

Simpson’s Paradox, for example, is why many people don’t think Roger Federer is not the greatest tennis player who ever lived. That’s because the Swiss has won 17 major championships, a record, among other career accomplishments. “But,” as Michael Steinberger wrote in the New York Times not long ago, “he has a losing record against [Rafael] Nadal, and a lopsided one at that.” (Nadal leads 23-10.) “How can you be considered the greatest player ever if you were arguably not even the best player of your own era?” Steinberger asks. Heroically, Steinberger attempts to answer that question in favor of Federer—the piece is a marvel of argumentation, where the writer sets up a seemingly-insurmountable rhetorical burden, the aforementioned question, then seeks to overcome it. What’s interesting, though—and in several searches through the Internet I discovered many other pieces tackling more or less the same subject—neither Steinberger nor anyone else attempted what an anonymous blogger did in 2009.

He added up the points.

The blog is called SW19, which is the United Kingdom’s postal code for the district Wimbledon is in. The writer, “Rahul,” is obviously young—he (or she) stopped posting in December of 2009, because of the pressures of college—but yet Rahul did something I have not seen any other tennis journalist attempt: in a post called “Nadal vs. Federer: A Pythagorean Perspective,” Rahul broke down “the Federer/Nadal rivalry on a point-by-point basis, just to see if it really is as lopsided as one would expect.” That is, given Nadal’s dominant win-loss record, the expectation would be that Nadal must win an equally-impressive number of points from Federer.

By July of 2009—the time of publication—Nadal led Federer by 13-7 in terms of their head-to-head record, a 65 percent winning percentage. The two champions had played 4,394 total points across those 20 matches—one of them the 2008 French Open, won by Nadal in straight sets, 6-1, 6-3, 6-0. (Nadal has, as of 2014, now won 9 French Opens, a majors record, while Federer has only won the French once—the very next year after Nadal blew him off the court: 2009.) Now, if there was a straightforward relation between points and wins, Nadal’s percentage of those points ought to be at least somewhat similar to his winning percentage of those matches.

But what Rahul found was this: of the total points, Nadal had won 2,221 and Federer 2,173. Nadal had only beaten Federer on 48 points, total, over their careers to that point, including the smackdown at Roland Garros in 2008. It’s less than one percent of all the points. And if you took that match out of the total, Nadal had won a grand total of eight more points than Federer, out of over 4,000 points and 19 other matches. It is not 65 percent. It is not even 55 percent.

Still, it’s the final nugget that Rahul uncovered that is likely of the most relevance. In three of the twenty matches won by Nadal to that moment in their careers, Federer had actually won more points: two matches in 2006, in Dubai and Rome, and once at the Australian Open in 2009. As Rahul points out, “if Federer had won those three matches, the record would sit at 10-10”—and at least in 2009, nobody would have been talking about Federer’s Achilles heel. I don’t know what the current Pythagorean record stands between the two players at the moment, but it’s interesting that nobody has taken up this detail when discussing Federer’s greatness—though nub of it has been taken up as a serious topic concerning tennis as a whole.

In January in The Atlantic, Professor Ryan Rodenberg of the Florida State University noted that not only did Federer have the 17 Grand Slam titles and the 302 weeks ranked No. 1 in the world, but he also held another distinction: “the worst record among players active since 1990 in so-called ‘Simpson’s Paradox’ matches—those where the loser of the match wins more points than the winner.” Federer’s overall record in these matches is like that of his record against Nadal: not good. The Swiss is only 4-24.

To tennis aficionados, it’s a point that must appear irrelevant—at least, no one until Professor Rodenberg appears to have mentioned it online. To be sure, it does seem questionably relevant: Federer has played nearly 1200 matches professionally; 28 is a pittance. But Rodenberg, along with his co-authors, found that matches like the Isner-Mahut match, where the loser out-scored the winner, constituted “about 4.5 percent” of “61,000 men’s ATP and Grand Slam matches dating back to 1990.” That’s over 3,000 matches—and given that, in exactly zero soccer matches or baseball games over that time frame or any other time, did the losing side net more goals or plate more runs than the other, it at the least raises some questions.

How, after all, is it possible for one side of the net to win—despite losing more of the points? The answer, as Rodenberg puts it, is  “tennis’ decidedly unique scoring system.” In sports like baseball, sports psychologist Allen Fox wrote recently on for the website for the magazine Tennis, “score is cumulative throughout the contest … and whoever has the most points at the end wins.” Sports like tennis or match play golf are different however: in tennis, as Fox says, “[i]f you reach game point and win it, you get the entire game while your opponent gets nothing—all the points he or she won in the game are eliminated.” In the same fashion, once a hole is over in match play golf it doesn’t matter what either competitor scored on that hole: each total is struck out, and the match in effect begins again. What that in turn means is that certain points, certain scoring events, have more value than others: in golf, what matters is the stroke that takes a hole, just as in tennis what matters is the point that takes a game, or a set, or a match. Those points are more valuable than other points—a fact of tremendous importance.

It’s this scoring mechanism that is what allows tennis and match play golf to produce Simpson’s Paradox games: a system whereby the competition as a whole is divided into smaller competitions that function independently of the others. In order to get Simpson’s Paradox results, having a system like this is essential. The $64,000 question however is: just who would design a system like that, a system that can in effect punish a player who does the thing that defines the sport better than the other player more often than the player who doesn’t? It isn’t enough just to say that results like that are uncommon, because why allow that to happen at all? In virtually every other sport, after all, no result like these would ever come up. The only serious answer must be that tennis and match play golf were specifically designed to produce Simpson’s Paradoxes—but why? The only way to seek that answer, I’d say, is to search back through history.

The game we today call tennis in reality is correctly termed “lawn tennis,” which is why the formal name of the organization that sponsors the Wimbledon tournament is the “All England Lawn Tennis and Croquet Club.” The sport is properly called that in order to distinguish it from the older game known as “real tennis” or, in French, Jeu de Paume. Whereas our game of tennis, or lawn tennis, is generally played outdoors and on a single plane, Jeu de Paume is played indoors, in unique, non-standardized courts where strange bounces and funny angles are the norm. And while lawn tennis only came into existence in 1874, Jeu de Paume goes well back into the Middle Ages. “World titles in the sport were first competed in 1740,” as Rolf Potts noted in a piece about the game in the online magazine, The Smart Set, “and have continued to the present day, making Jeu de Paume men’s singles the oldest continuous championship event in sport.” Jeu de Paume, thus, is arguably the oldest sport in the world.

Aside from its antiquity, the game is also, and not unrelatedly, noted for its roots in the ancien regime: “Nearly all French royalty were familiar with the sport from the 13th century on,” as Rolf Potts notes. And not just French royalty: Henry VIII of England is regularly described as a great player by historians. These are not irrelevant facts, because the status of the players of Jeu de Paume in fact may be directly relevant to how tennis is scored today.

“When modern tennis,” writes Potts, “was simplified into its popular form in 1874, it appropriated the scoring system of the ancient French game.” So our game of tennis did not invent its own method of scoring; it merely lifted another game’s method. And that game’s method may be connected to the fact that it was played by aristocrats in the fact that so much about Jeu de Paume is connected to gambling.

“In October of 1532,” Potts reports, Henry VIII lost 50 pounds on tennis matches: “about a thousand times the sum most Englishmen earned in a week.” Anne Boleyn, Henry’s second wife, by some accounts “was betting on a tennis game when Henry’s men arrested her in May of 1536,” while others say that her husband received the news of her execution while he himself was playing a match. Two centuries earlier, in 1355, King John II of France had been recorded paying off a bet with “two lengths of Belgian cloth.” And in Rob Lake’s academic paper, “Real Tennis and the Civilising Process,” published in the academic journal Sport in History, Lake claims that “the game provided opportunities for nobles to engage in conspicuous consumption … through gambling displays.”

So much so, in fact, that Potts also reports that “some have speculated that tennis scoring was based on the gros denier coin, which was said to be worth 15 deniers.” Be that as it may, two facts stand out: the first is that the game’s “gradual slide into obscurity began when fixed games and gambling scandals sullied its reputation in the late 17th century,” and the second that “games are still regulated by a complicated handicapping system … so that each player begins the game with an equal expectation of winning.” So elaborate is that handicap system, in fact, that when Rolf Potts plays the first match of his life, against a club professional who is instructing him, he “was able to play a close game.” Gambling, in seems, was—as Potts says—“intrinsic to Jeu de Paume.” And since the sport still has a handicap system, which is essential to gambling, so it still is.

We can think about why that is by comparing Jeu de Paume to match play golf, which also has an early connection both to feudalism and gambling. As Michael Bohn records in Money Golf: 600 Years Of Bettin’ On Birdies, the “earliest record of a golf bet in Scotland was in 1503,” when on February 3 King James IV paid out 42 shillings to the Earl of Bothwell in “play at the golf.” And as John Paul Newport of the Wall Street Journal writes, “historically all the early recorded competitions—King James IV in 1503, for example, or the Duke of York, later King James II [of England], in 1681—were match play.” That is likely not a coincidence, because the link between the aristocracy, gambling, and match play is not difficult to explain.

In the first place, the link between the nobility and gambling is not difficult to understand since aristocrats were virtually the only people with both money and the time for sport—the opportunity, as a prosecutor would say. “With idle people amusement is the business of life,” as  the London magazine The Spectator noted in 1837; and King James’ bet with the Earl of Bothwell—42 shillings, or a little over £2—would have bought roughly six month’s work from a laborer during the sixteenth century. Not merely that: the aristocracy were practically the only people who, legally speaking, could gamble in during the Renaissance: as Nicholas Tosney notes in a paper for the University of Nevada, Las Vegas in 2010—“Gaming in Britain and America: Some Historical Comparisons”—gambling in England was outlawed in 1541 for anyone not at least a gentleman.

Yet just having the ability does not carry a case. It’s also required to be able to posit a reason—which of course isn’t all that hard to find when it comes to gambling. Aside from the obvious financial inducement, though, aristocratic men had something extra pushing them toward gaming. As the same 1837 Spectator article noted, gambling was widely thought to be “a necessary accomplishment of a young man in fashionable circles.” After all, what better way to demonstrate belonging to the upper classes by that form of conspicuous consumption that buys—nothing? The literature on the subject is so extensive as to not need bothering with trolling out in its entirety: nobles had both the means and the motive to gamble, so it therefore seems reasonable to suppose that a game adopted by gamblers would be ideal for gambling.

And examined closely, match play does have such features. Gambling after all would best explain why match play consists of what John Van der Borght calls “18 one-hole contests.” According to John Paul Newport, that’s so “an awful hole here or there doesn’t spoil the day”—but a better explanation is likely because doing things that way allows the previous hole’s loser to bet again. Multiplying contests obviously increases the opportunity to bet—and thus for a sucker to lose more. And that’s why it is significant that the match play format should have a link to the nobility and gambling: because it helps to demonstrate that the two formats of golf are not just different versions of the same game, but in fact have two different purposes—purposes that are so different they are virtually different sports.

That difference in purpose is likely why, as Newport observes, it isn’t “until the mid-18th century are there records of stroke-play competitions.” One reason for the invention of the stroke play format was, Newport tells us, “to make tournaments involving larger numbers of golfers feasible.” The writer for the Wall Street Journal—make of that connection what you will—presents the new format as simply demanded by the increasing number of players (a sign, though Newport does not mention it, that the game was spreading beyond the boundaries of the nobility). But in reality stroke play was invented to serve a different purpose than match play, a purpose even now recognized by the United States Golf Association.

About the best definition of the purpose of stroke play—and thus, it’s difference from match play—can be found in the reply Sandy Tatum, then the executive director of the United States Golf Association, gave to a reporter at the 1974 U.S. Open at Winged Foot. That tournament would become known as “the Massacre at Winged Foot,” because even the winner, Hale Irwin, finished over par (+7). So when the extent of how tough the golf course was playing became obvious, one reporter asked Tatum if the USGA was trying to embarrass the best players in the world. What Tatum said in reply to the reporter is about as succinct an explanation of the purpose of the U.S. Open, and stroke play, as is possible.

“Our objective is not to humiliate the best golfers in the world,” Tatum said in response to the question: “It’s to identify them.”And identifying the greatest golfers is still the objective of the USGA: That’s why, when Newport went to interview the current executive director of the USGA, Mike Davis, about the difference between stroke play and match play for his article, Davis said “If all you are trying to do is determine who is playing the best over a relatively short period of time, [then] 72 holes of stroke play is more equitable [than match play].” The position of the USGA is clear: if the purpose of the competition is to “identify,” as Tatum said, or “determine,” as Davis said, the best player, then the best format for that purpose is stroke play, and not match play.

One reason why the USGA can know this is that it is obviously not in the interest of gamblers to identify themselves as great players. Consider, for instance, a photo printed along with Golf magazine’s excerpt of Kevin Cook’s book, Titanic Thompson: The Man Who Bet On Everything. The photo depicts one Alvin “Titanic Thompson” Thomas, swinging a club late in life. Born in 1892, Cook says that “Titanic was the last great player to ignore tournament golf”—or stroke play golf, anyway. Not because he couldn’t: Cook says that Byron Nelson, who among other exploits won 11 tournaments on the PGA Tour in a row in the summer of 1945, and thus seems an excellent judge, said “there was ‘no question’ that Titanic could have excelled on Tour, ‘but he didn’t have to.’”—because Titanic “‘was at a higher level, playing for $25,000 a nine while we [Tour players] played for $150.’” Thomas, or Thompson was the greatest of golf gamblers; hence the caption of the photo: “Few golf photos exist of Thompson,” it reads, “for obvious reasons.” Being easily identifiable as a great golfer, after all, is not of much use to a gambler—so a format designed for gambling would have little incentive to “out” better players.

To put it simply then the game of tennis today has the structure that it does today because it descends from a different game—a game whose intent was not to identify the best player, but rather to enable the best player to maximize his profits. Where the example of tennis, or match play golf, should then lead specifically, is to the hypothesis that any point-driven competition that has non-continuous scoring—which is to say divided into sub-competitions whose results are independent of all the others—and where some parts of the competition have a higher value than other parts, ought to raise doubt, at the least, as to the validity of the value of the competition’s results.

The nature of such structures make it elementary to conceal precisely that which the structure is ostensibly designed to reveal: the ultimate value that underlies the whole operation, whether that is the athletic ability of an individual or a team—or something else entirely. Where goal difference and Pythagorean Expectation and stroke play all consolidate scores in order to get at the true value those scoring events represent, tennis’ method and match play divide scores to obscure value.

That’s why match play is so appealing to golf gamblers—it allows the skilled player to hide his talent, and thus maximize income. Conversely, that’s why the U.S. Open uses stroke play: because the USGA wants to reveal the best player. Some formats of play lend themselves to one purpose or the other—and what that leads to is a kind of thought experiment. If the notion advanced here is correct, then there are two kinds of ways a given sport may score itself, and concurrently two different purposes those different means of scoring may serve. If a sport is more like golf’s match play than it is like golf’s stroke play, in short, it can be predicted that it’s likely to be vulnerable to gamblers.

As it happens, it’s widely believed that professional tennis has a gambling problem. “Everyone knows,” said last year’s Wimbledon winner, Andy Murray, “that match-fixing takes place in professional tennis”—all the way back in October of 2007. A story in the Guardian that year summed up the scandal that broke over the sport that August, which began when the world’s largest online betting exchange, Betfair, reported “irregular gambling patterns” on a match between Nikolay Davydenko—once ranked as high as #3 in the world—and Martin Arguello—at the time ranked #87—at the Polish Open. At the end of September 2007, Novak Djokovic—this year’s Wimbledon champion—said “he was offered £10,000 to lose in a tournament in St. Petersburg” the previous year. In late October of 2007—after Murray’s comment to the press—“French undercover police” were “invited into the Paris Masters amid suspicions of match-fixing in tennis.” But what Simpson’s Paradox would tell the police—or tennis’ governing bodies—is that looking for fixed matches is exactly what the cunning gambler would want the authorities to do.

“The appeal of tennis to gamblers,” wrote Louisa Thomas for Grantland earlier this year, “makes total sense” for a number of reasons. One is that “tennis is played everywhere, all the time”: there’s likely a tournament, somewhere in the world, any time anyone feels the urge to bet, unlike a lot of other sports. That ubiquity makes tennis vulnerable to crooked gamblers: as Thomas observes, there are “tens of thousands of professional matches, hundreds of thousands of games, millions of points”—a spread of numbers so wide that the volume alone discourages detection by any authority.

Another reason why tennis should be appealing to gamblers is that “bettors can make wagers during play itself”: you can get online while watching a match and lay down some action. As The Australian reported this year—when a young man was arrested at the Australian Open with an electronic device designed to transmit scores quicker than the official tournament did—there are “websites that allow bets to be laid on individual events such as whether a player faults on serve.” Now, essentially the scam that the man at the Australian Open was arrested for is the same con as depicted in the film The Sting, which itself tells something of a tale about the sport.

But the real scandal of tennis, though perhaps Thomas does not emphasize this enough, is that it is vulnerable to manipulation simply because  “broken into discrete points, games, sets, matches, and tournaments.” It’s a point, however, that one of Professor Rodenberg’s students understands.

What Benjamin Wright—a graduate student in Rodenberg’s department at the Florida State University—knows is that because of tennis’ scoring system, the sport doesn’t need to have crooked players throwing matches to be corrupt. “Governing bodies must be aware,” says Wright—in his master’s thesis, “Best of N Contests: Implications of Simpson’s Paradox in Tennis”—“that since tennis does not use a running score like other sports intentionally losing points, games, and sets is plausible since such acts may not have long-term implications.” In other words, “a player would not need to lose an entire match intentionally.” All that’s necessary—especially since it’s possible to bet on tennis in real time—is for a player to lose “points during specific periods of a match.” All a gambler needs to know, that is, is that a player will throw the second point of the fourth game of the second set—knowledge that is nearly undetectable because under the rules of the game it is entirely possible for a player to shave points without risking a loss.

“Who’s to say,” says Thomas about the undetectability of corruption, a player is “not just having a really rotten day?” But what Thomas doesn’t appear to grasp fully is that the actual disgrace is the question of how a player could be accused of corruption if she has won her match? That’s the real scandal: how even apparently well-trained journalists can miss the point. “Although tennis is perceived as a genteel sport,” wrote Joe Drape of the New York Times about the Davydenko scandal in 2007, “it has always confronted the same problem as other contests based on individual competition like boxing.” That problem, Drape said, is that a “fixer needs to sway only one person, and taking a dive is hard to detect.” Drape is, to be sure, right about what he says—so far as that goes. But Drape does not point out—I think likely because he does not understand—why “taking a dive” is so difficult to unmask in tennis: because it’s possible to throw a point—or a game, or a set—without affecting the outcome of the match.

Now, this is so obviously crooked that the gall of it is simply breathtaking. Yet the reality is simply that, aside from a few very naive people who could probably stand to have a few dollars taken from them by shrewd, and likely Russian, mobsters, no one really loses much by this arrangement. There are far worse scams in the world, and people who bet on tennis are probably not very sympathetic victims. But what knowing what we now know about tennis, and match play golf, allows us to now do is to evaluate all competitions: any contest which has the characteristics we have isolated (non-cumulative scoring, unequal points) will necessarily produce Simpson’s Paradox results. Further, any contest that produces Simpson’s Paradox results does so by design: there’s no reason to add an extra layer of complexity to a competition unless it’s in somebody’s interests. Lastly, since the only reason to add that layer of complexity, and thus produce Simpson’s Paradoxes, is to conceal value, it’s more likely than not that those interests are not entirely legitimate.

Now, it so happens that there is a competition that has those two characteristics and has demonstrably produced at least one paradoxical result: one where the “winner” lost and the “loser” won.

That competition is called an American presidential election.

Pinky and the Brain

“He’s the kind of player who feeds off his ego”

—Ian Baker-Finch on Ian Poulter.

Just a quick note about the finale of the Match Play today: it is, for the casual fan, exactly the sort of nightmare that keeps television executives awake at night. Nobody playing today (Sunday) is an American, and though it’s arguable that nobody would be watching anyway—the Olympics, after all—that can’t be comfortable for CBS, especially since the whole tournament was upstaged Friday by the Absent God. Anyway, I will be rooting for Paul Casey today—despite the fact that he just missed a virtual kick-in he needed to make on 7 (25th hole)!—mostly because … well, it isn’t because Poulter is dressed resplendently all in pink. I could make up some explanation here, but I’ll just say I don’t like Poulter due to an encounter I had with him some years ago at Cog Hill. I will give details in some later post, though a clue can be found in Baker-Finch’s comment I have reproduced above. (Poulter likes himself. A lot.)

Casey though seems to be worth rooting for despite what he said some years ago about Americans (“Americans are stupid”). Ok, he’s not the brightest bulb perhaps—uh, Paul, smart people tend not to say things like that for publication—but seems likable enough, not that it matters, but most importantly he employs Luke Donald’s brother as a caddie. That might be perceived as a negative, which actually it is because it’s one job less for an American looper, but did I mention I don’t like Poulter?

As I’m writing, Poulter is putting the hammer down on Casey, having just knocked it close in two on the par-five eighth while Casey missed the green. I’ll live-blog this part: Poulter misses the putt … just barely. Now Casey must make a birdie to halve: he made it! Casey remains at 4-Down. It isn’t looking good for Casey.

One other thing: Villegas has Garcia 4-Down in the consolation match, after hitting a spectacular shot out of the desert for birdie. It’s arguable that, given Poulter’s virtually incomprehensible accent, Casey is the only one of the four players on the course today that speaks a recognizable form of English to most Americans, which I offer as another reason to root against Poulter should there be any xenophobes in the audience here.

Poulter just putted off the green! Sure, he got his next shot close, but he’s still looking at least three to get down while Casey can two-putt to win the hole (the ninth on the second eighteen today.) Let’s see if he does: yep. There’s a bit of drama in that neither player conceded the short putts each had left to finish the hole. The lead is three with nine to go. I’m going to post this so you can see it if you’re reading while watching the tournament (you likely aren’t.) If you aren’t, hope the future is good.

***Poulter wins, 4 & 2.

Match the Emperor

In my neighborhood in Chicago there’s a church built in 1903 by the noted architect Louis Sullivan. What many people are surprised to learn is that the client was the Tsar of All the Russias, Nicholas II, later on the receiving end of some nastiness. But I bring up Sullivan’s church on Day 3 of the Accenture Match Play, one of the World Golf Championships, not to show how “globalization” is older than we sometimes think. Rather, I bring it up because Sullivan, father of architectural modernism, invented the phrase “form follows function”—a phrase that many of us like because it seems to validate our sense that aesthetics are secondary, trifling. What matters, as the phrase goes, is the “steak and not the sizzle. That may be so for many things but not, as it happens, in this week’s headline tournament, because in match-play function follows form(at).

The reasons why are I think instructive: if last week I tried to illustrate how golf is best understood in the light of punk-rock band the Clash’s song, “Should I Stay Or Should I Go,” by describing a practical example, this week I’d like to discuss the more theoretical reasons behind the Clash’s profound insight. Match play is the exception that proves—in the old sense of tests—Sullivan’s rule. If nothing else, reading this essay might enlighten you as to the reasons why old golfers will tell you most bets are won long before the first ball is struck.

To understand why match-play is different first requires an understanding of that from which it differs: stroke-play, the format of 90% or more of all professional golf tournaments. In stroke-play, everyone goes out and plays—usually four rounds on the PGA Tour—and whoever has the fewest shots at the end wins. It’s straightforward. What isn’t as often realized, or at least not explicitly realized, is the effect that this has on the style—what Sullivan might call the form—of play: stroke-play rewards conservative decisions.

Tiger Woods’ driverless walk around Hoylake in 2006 wasn’t very punk, and neither was David Toms “lay-up heard ’round the world” at the PGA Championship in 2001, when Toms refused to risk rinsing his ball in the pond in front of the 18th green on the last day but still made a par to win. But these decisions, though unheroic, make sense in the stroke-play format because of something professionals understand and most amateurs don’t: stroke play creates an asymmetry.

Asymmetry in golf is hard for the amateur to understand: what it means, in a stroke-play tournament, is that a double-bogey is much more harmful than an eagle is helpful. This doesn’t make sense to most people—if you play two holes and make an eagle on one and a double-bogey on the other, then you have shot par for those two holes. Effectively then the one cancels out the other, because both are two strokes better or worse than par. In this view, golf scores look sort of like a bell curve: if par is the mid-point, then every score on one side of par is balanced by another score on the other side. So at least it would seem.

In a stroke-play tournament though the two scores are not actually equivalent. Why? Well, because in a stroke-play tournament all the scores matter: the winner is determined by the number of shots taken over the length of the whole tournament. Since the number of holes is limited (unless there is a play-off), that means there is a limited number of chances to make a good score on each hole. And what that means is that scoring a double-bogey not only adds two shots to the total score, but also uses up an opportunity to make a good score. Economists refer to this concept as opportunity cost. By making a double-bogey, not only are you that much further behind the rest of the field, but also you will need two other birdie holes to get back to par—instead of using those two holes to go under par. And now you are that much closer to the end of the tournament.

It might be objected at this point that, well, isn’t that what makes an eagle so valuable, because it instantly offsets the double-bogey? In a sense of course that’s true, but in another sense it isn’t. To see why, let’s look at an analogy: in this case, let’s suppose a professional golfer is like a corporation. Being under par is like being profitable, while being over par is like being indebted.

An eagle then can be likened to an unexpected windfall, while a double-bogey can be thought of as a loan. When a corporation makes a profit, it faces choices: for instance, to invest in more research in order to increase its chances of outperforming its competitors in the future, or to pay back its investors. Paying back investors sacrifices the future for the past; if a corporation gets too indebted it doesn’t matter what sorts of profits come in because they are all devoted to paying off the past debt. It’s a story that might sound familiar these days …

The killer is that a golfer has to post some score for every hole: there are no negative scores. It’s possible to score almost any number of scores worse than par on a given hole, but there isn’t any way to shoot a score better than one. Golf scores are not distributed like a bell curve: they’re more like the Nike swoosh, with a long tail.

With that in mind, it’s far more probable, even for a highly skilled golfer, that a score on a given hole will be worse than par than it will be better than par (there’s echoes here of the Second Law of Thermodynamics, for anyone interested.) A double-bogey creates a debt that must be repaid in order to catch the rest of the field, while an eagle can be spent to advance ahead of the field. But as the proverb “one step forward, two steps back” suggests, debts create a bigger hole than profits create a bigger hill.

In a stroke-play tournament, therefore the correct strategy is usually to avoid the double-bogey rather than attempt the eagle. If a golfer makes an eagle it doesn’t benefit as much as a worse score will cost over the length of a tournament. In fact, it’s likely that even if the number of eagles and double-bogeys a golfer makes equal each other that likely means you aren’t looking at the winner of a stroke-play tournament.  As professionals say, “the big number is what hurts.” The friction of a double-bogey creates more “drag” than the propulsion of an eagle thrusts a golfer forward.

Tiger and Toms pursued the strategies they did, in sum, not because they didn’t think they could pull off those shots—they are two of the most skilled players in the world, after all—but rather because of how they thought about it. This is something very significant that isn’t understood by the average player. The difference between the professional and the amateur isn’t how they perform, but how they think.

That thought process, however, is muted in match-play because match-play is not cumulative in the same way that stroke-play is. Each hole is in effect its own separate tournament: what matters is who won or lost a given hole, not total score at the end of the round. Match-play thusly flips the calculation of value: scores under par on a given hole are suddenly much more valuable than they are in stroke-play, while conversely scores over par are much less costly. A score under par is valuable because it guarantees either progress (a win on that hole) or at worst is neutral (a tie), while any score over par is essentially the same (a likely loss).

The distribution of scores therefore becomes much more like a standard bell curve: all the scores at the far end of the scale are effectively the same, so there isn’t a long tail to the curve anymore. What that means is that the method of selecting (I mean this word in a Darwinian sense) a winner changes: whereas a player who made both a lot of birdies and a lot of bogies wouldn’t last long on in stroke-play tournaments (cf. the career of John Daly), such a player could survive, and even thrive, in a match-play environment.

Against Louis Sullivan then, in golf the form dictates the substance: what sort of golf we get is determined by the rules, the form, we select before the competition starts. Match-play would seem to make for more exciting golf: Bobby Jones’ “lilly-pad shot” at Interlachen in 1930, Gene Sarazen’s “shot heard ‘round the world” at the 15th at Augusta in 1935, and Gary Player’s “over-the-tree shot” at Hazeltine in 1970 were examples of heroic decisions to go rather than stay, and all of them are remembered more fondly than Tiger Woods’ performance at Hoylake or David Toms’ lay-up. Those shots, except for preceding the Sex Pistols by some years, were pretty punk. Why not then institute a format that rewards the high-risk shot more than it penalizes it?

Yet we don’t happen to live in that environment. Usually, things are said to be this way because match-play is “too random,” too volatile: because the effects of each hole are not cumulative, the inherent quality of a player like Ernie Els (a notorious folder in the Match Play) isn’t allowed to demonstrate itself, which leads to finals like the Kevin Sutherland vs. Scott McCarron opus in 2002. As Frank Chirkinian, the long-time producer of golf coverage at CBS who basically invented golf on television, once said,  “golf fans don’t want the underdog to win.” But what might be said is that this perception might be a species of question-begging: what it may be is simply that most if not all professional tournaments are conducted according to stroke-play, not match-play. The usual champions we see, then, have been selected to be stroke-play champions. If there were more of a balance between the two formats our perceptions of what makes a good golfer might change as well.

After all, back when the PGA Championship was conducted according to match-play, Walter Hagen had no problem winning it six times, and Jack Fleck did beat Ben Hogan in the 1955 U.S. Open—conducted according to stroke-play. It isn’t as though no-names don’t win stroke-play tournaments (Todd Hamilton, anyone?), nor is it the case that match-play gives too much of a handicap to lesser players (Tiger Woods has won the Match Play three times). The perception is that stroke-play is fairer because it supposedly produces the better player as the winner  more consistently. But that perception might just be a case of valuing the sizzle—the golfer-as-celebrity, you might say—over the steak, which is exciting golf.

On that note, I watched the Match Play yesterday and I have to say that I’ve seen few tournament rounds that were more thrilling. In the space of an hour, I saw two different players hit shots that hit the flagstick. I saw players dig themselves out of what looked like impossible situations with amazing shots from the rough or from bunkers to turn the tables on opponents sitting comfortably on the fairway. A couple of shots found the hole or lipped out from off the green. And yet, I have almost no memory of who hit any of those shots (though the Els-Goosen match was pretty dramatic.) In that way, maybe match-play is a more democratic kind of golf, because it makes what we watch more about the actual game, rather than who’s playing it.

Being more about who than what is, after all, what got Louis Sullivan’s church-building employer in trouble all those years ago. It’s an odd historical pun that the name of the magazine for the movement that eventually brought Nicholas II down was, loosely translated, The Match—i.e., the flame set to burn Nicholas and his empire down. All of which is fairly remote from golf, to be sure. What sort of trouble could golf get into by putting everything on the shoulders of one man?